University of Computer Studies, Yangon B.C.Sc./B.C.Tech.

CT-305	: Linear Control Systems	First Semester
Text book	: Modern Control System (12 th Edition)	
	by Richard C. Dorf and Robert H. Bishop	
Period	: 45 periods for 15 weeks (3 periods/week) (Lecture +Lab)	

Course Description

Introduction to automatic control systems; mathematical models of physical systems; block diagrams and signal flow graphs; transient and steady state responses.

Course Objectives

 To teach the fundamental concepts of Control systems and mathematical modeling of the

system

- to provide basic linear systems background with emphasis on deriving mathematical models for linear time invariant electrical, mechanical and electromechanical systems, and relating the output behavior to these models.
- To study the concept of time response and frequency response of the system
- To teach the basics of stability analysis of the system

References

- 1. Modern Control Systems (12th Edition) by Richard C. Dorf & Robert H. Bishop
- Design of Feedback Control Systems (4th Edition), 2002 by Raymond T. Stefani, Bahram Shahian, late Clement J. Savant, and late Gene H. Hostetter Oxford Press
- 3. Modern Control Engineering, 2001 by Katsuhiko Ogata Prentice-Hall
- 4. Modern Control System Theory, 2001 by M.Gopal Wiley Eastern Ltd.
- 5. Introduction to Control Theory (2nd Ed) by J. Doyle, B. Francis, and A. Tannenbaum

Assessment Plan for the Course

Paper Exam:	60%
Attendance:	10%
Test/ Quiz:	10%
Lab:	10%
Lab Assessment:	10%

Tentative Lecture Plan

No.	Chapter	Page	Period	Detail Lecture Plan
1.	Chapter 1 Introduction to Control Systems	1-48	2	Overall
	Chapter 2 Mathematical Models of Systems	49-160	14	All Examples, Exercises
				and Problems
2.	2.1 Introduction	50-50	1	/
3.	2.2 Differential Equations of Physical	50-55	2	/
	Systems			
4.	2.3 Linear Approximations of Physical	55-58	2	/
	Systems			
5.	2.4 The Laplace Transform	58-64	2	/
6.	2.5 The Transfer Function of Linear Systems	65-79	2	/
7.	2.6 Block Diagram Models	79-84	2	/
8.	2.7 Signal-Flow Graph Models	84-90	1	/
9.	2.8 Design Examples	90-112	1	/
10.	2.10 Sequential Design Examples	128-130	1	/
	Chapter 4 Feedback Control System	234-303	10	All Examples, Exercises
	Characteristics			and Problems
12.	4.1 Introduction	235-239	2	/
	4.2 Error Signal Analysis			
13.	4.3 Sensitive of Control Systems to Parameter	239-242	2	/
	Variations			
14.	4.4 Disturbance Signals in a Feedback Control	242-247	2	/
	Systems			
15.	4.5 Control of the Transient Response	247-253	2	/
	4.6 Steady-State Error			
16.	4.7 The Cost of Feedback	253-267	1	/
	4.8 Design Example			
17.	4.10 Sequential Design Examples	273-277	1	/
	Chapter 5 The Performance of Feedback	304-385	10	All Examples, Exercises
	Control Systems			and Problems

No.	Chapter	Page	Period	Detail Lecture Plan
19.	5.1 Introduction	305-307	2	/
	5.2 Test Input Signals			
20.	5.3 Performance of a Second-Order System	308-320	2	/
	5.4 Effects of a Third Pole and a Zero on the			
	Second-Order System Response			
21.	5.5 The s-plane Root Location and the	320-322	2	/
	Transient Response			
22.	5.6 The Steady State Error of Feedback	322-330	2	
	Control Systems			
23.	5.7 Performance Indices	330-342	1	/
	5.8 The Simplification of Linear Systems			
24.	5.11 Design Examples	342-363	1	/
	5.13 Sequential Design Examples			
	Chapter 6 The Stability of Linear	386-	7	All Examples, Exercises
	Feedback Systems			and Problems
26.	6.1 The Concept of Stability	387-391	1	/
27.	6.2 The Routh-Hurwitz Stability Criterion	391-399	1	/
28.	6.3 The Relative Stability of Feedback Control	399-404	2	/
	Systems			
	6.4 The Stability of State Variable Systems			
29.	6.5 Design Example	404-412	2	/
30.	6.7 Sequential Design Example	421-423	1	
32.	Revision		2	All chapters